Task


Object Hierarchy:

Object hierarchy for Task

Description:

public class Task : Object, AsyncResult

A Task represents and manages a cancellable "task".

Asynchronous operations

The most common usage of Task is as a AsyncResult, to manage data during an asynchronous operation. You call Task in the "start" method, followed by set_task_data and the like if you need to keep some additional data associated with the task, and then pass the task object around through your asynchronous operation. Eventually, you will call a method such as return_pointer or return_error, which will save the value you give it and then invoke the task's callback function (waiting until the next iteration of the main loop first, if necessary). The caller will pass the Task back to the operation's finish function (as a AsyncResult), and you can use propagate_pointer or the like to extract the return value.

Here is an example for using GTask as a GAsyncResult:

    typedef struct {
CakeFrostingType frosting;
char *message;
} DecorationData;

static void
decoration_data_free (DecorationData *decoration)
{
g_free (decoration->message);
g_slice_free (DecorationData, decoration);
}

static void
baked_cb (Cake *cake,
gpointer user_data)
{
GTask *task = user_data;
DecorationData *decoration = g_task_get_task_data (task);
GError *error = NULL;

if (cake == NULL)
{
g_task_return_new_error (task, BAKER_ERROR, BAKER_ERROR_NO_FLOUR,
"Go to the supermarket");
g_object_unref (task);
return;
}

if (!cake_decorate (cake, decoration->frosting, decoration->message, &error))
{
g_object_unref (cake);
// g_task_return_error() takes ownership of error
g_task_return_error (task, error);
g_object_unref (task);
return;
}

g_task_return_pointer (task, cake, g_object_unref);
g_object_unref (task);
}

void
baker_bake_cake_async (Baker *self,
guint radius,
CakeFlavor flavor,
CakeFrostingType frosting,
const char *message,
GCancellable *cancellable,
GAsyncReadyCallback callback,
gpointer user_data)
{
GTask *task;
DecorationData *decoration;
Cake *cake;

task = g_task_new (self, cancellable, callback, user_data);
if (radius < 3)
{
g_task_return_new_error (task, BAKER_ERROR, BAKER_ERROR_TOO_SMALL,
"%ucm radius cakes are silly",
radius);
g_object_unref (task);
return;
}

cake = _baker_get_cached_cake (self, radius, flavor, frosting, message);
if (cake != NULL)
{
// _baker_get_cached_cake() returns a reffed cake
g_task_return_pointer (task, cake, g_object_unref);
g_object_unref (task);
return;
}

decoration = g_slice_new (DecorationData);
decoration->frosting = frosting;
decoration->message = g_strdup (message);
g_task_set_task_data (task, decoration, (GDestroyNotify) decoration_data_free);

_baker_begin_cake (self, radius, flavor, cancellable, baked_cb, task);
}

Cake *
baker_bake_cake_finish (Baker *self,
GAsyncResult *result,
GError **error)
{
g_return_val_if_fail (g_task_is_valid (result, self), NULL);

return g_task_propagate_pointer (G_TASK (result), error);
}

Chained asynchronous operations

Task also tries to simplify asynchronous operations that internally chain together several smaller asynchronous operations. get_cancellable, get_context, and get_priority allow you to get back the task's Cancellable, MainContext, and I/O priority when starting a new subtask, so you don't have to keep track of them yourself. g_task_attach_source simplifies the case of waiting for a source to fire ( automatically using the correct MainContext and priority).

Here is an example for chained asynchronous operations:

    typedef struct {
Cake *cake;
CakeFrostingType frosting;
char *message;
} BakingData;

static void
decoration_data_free (BakingData *bd)
{
if (bd->cake)
g_object_unref (bd->cake);
g_free (bd->message);
g_slice_free (BakingData, bd);
}

static void
decorated_cb (Cake *cake,
GAsyncResult *result,
gpointer user_data)
{
GTask *task = user_data;
GError *error = NULL;

if (!cake_decorate_finish (cake, result, &error))
{
g_object_unref (cake);
g_task_return_error (task, error);
g_object_unref (task);
return;
}

// baking_data_free() will drop its ref on the cake, so we have to
// take another here to give to the caller.
g_task_return_pointer (result, g_object_ref (cake), g_object_unref);
g_object_unref (task);
}

static void
decorator_ready (gpointer user_data)
{
GTask *task = user_data;
BakingData *bd = g_task_get_task_data (task);

cake_decorate_async (bd->cake, bd->frosting, bd->message,
g_task_get_cancellable (task),
decorated_cb, task);
}

static void
baked_cb (Cake *cake,
gpointer user_data)
{
GTask *task = user_data;
BakingData *bd = g_task_get_task_data (task);
GError *error = NULL;

if (cake == NULL)
{
g_task_return_new_error (task, BAKER_ERROR, BAKER_ERROR_NO_FLOUR,
"Go to the supermarket");
g_object_unref (task);
return;
}

bd->cake = cake;

// Bail out now if the user has already cancelled
if (g_task_return_error_if_cancelled (task))
{
g_object_unref (task);
return;
}

if (cake_decorator_available (cake))
decorator_ready (task);
else
{
GSource *source;

source = cake_decorator_wait_source_new (cake);
// Attach @source to @task's GMainContext and have it call
// decorator_ready() when it is ready.
g_task_attach_source (task, source,
G_CALLBACK (decorator_ready));
g_source_unref (source);
}
}

void
baker_bake_cake_async (Baker *self,
guint radius,
CakeFlavor flavor,
CakeFrostingType frosting,
const char *message,
gint priority,
GCancellable *cancellable,
GAsyncReadyCallback callback,
gpointer user_data)
{
GTask *task;
BakingData *bd;

task = g_task_new (self, cancellable, callback, user_data);
g_task_set_priority (task, priority);

bd = g_slice_new0 (BakingData);
bd->frosting = frosting;
bd->message = g_strdup (message);
g_task_set_task_data (task, bd, (GDestroyNotify) baking_data_free);

_baker_begin_cake (self, radius, flavor, cancellable, baked_cb, task);
}

Cake *
baker_bake_cake_finish (Baker *self,
GAsyncResult *result,
GError **error)
{
g_return_val_if_fail (g_task_is_valid (result, self), NULL);

return g_task_propagate_pointer (G_TASK (result), error);
}

Asynchronous operations from synchronous ones

You can use g_task_run_in_thread to turn a synchronous operation into an asynchronous one, by running it in a thread which will then dispatch the result back to the caller's MainContext when it completes.

Running a task in a thread:

    typedef struct {
guint radius;
CakeFlavor flavor;
CakeFrostingType frosting;
char *message;
} CakeData;

static void
cake_data_free (CakeData *cake_data)
{
g_free (cake_data->message);
g_slice_free (CakeData, cake_data);
}

static void
bake_cake_thread (GTask *task,
gpointer source_object,
gpointer task_data,
GCancellable *cancellable)
{
Baker *self = source_object;
CakeData *cake_data = task_data;
Cake *cake;
GError *error = NULL;

cake = bake_cake (baker, cake_data->radius, cake_data->flavor,
cake_data->frosting, cake_data->message,
cancellable, &error);
if (cake)
g_task_return_pointer (task, cake, g_object_unref);
else
g_task_return_error (task, error);
}

void
baker_bake_cake_async (Baker *self,
guint radius,
CakeFlavor flavor,
CakeFrostingType frosting,
const char *message,
GCancellable *cancellable,
GAsyncReadyCallback callback,
gpointer user_data)
{
CakeData *cake_data;
GTask *task;

cake_data = g_slice_new (CakeData);
cake_data->radius = radius;
cake_data->flavor = flavor;
cake_data->frosting = frosting;
cake_data->message = g_strdup (message);
task = g_task_new (self, cancellable, callback, user_data);
g_task_set_task_data (task, cake_data, (GDestroyNotify) cake_data_free);
g_task_run_in_thread (task, bake_cake_thread);
g_object_unref (task);
}

Cake *
baker_bake_cake_finish (Baker *self,
GAsyncResult *result,
GError **error)
{
g_return_val_if_fail (g_task_is_valid (result, self), NULL);

return g_task_propagate_pointer (G_TASK (result), error);
}

Adding cancellability to uncancellable tasks

Finally, g_task_run_in_thread and g_task_run_in_thread_sync can be used to turn an uncancellable operation into a cancellable one. If you call set_return_on_cancel, passing true, then if the task's Cancellable is cancelled, it will return control back to the caller immediately, while allowing the task thread to continue running in the background ( and simply discarding its result when it finally does finish). Provided that the task thread is careful about how it uses locks and other externally-visible resources, this allows you to make "GLib-friendly" asynchronous and cancellable synchronous variants of blocking APIs.

Cancelling a task:

    static void
bake_cake_thread (GTask *task,
gpointer source_object,
gpointer task_data,
GCancellable *cancellable)
{
Baker *self = source_object;
CakeData *cake_data = task_data;
Cake *cake;
GError *error = NULL;

cake = bake_cake (baker, cake_data->radius, cake_data->flavor,
cake_data->frosting, cake_data->message,
&error);
if (error)
{
g_task_return_error (task, error);
return;
}

// If the task has already been cancelled, then we don't want to add
// the cake to the cake cache. Likewise, we don't want to have the
// task get cancelled in the middle of updating the cache.
// g_task_set_return_on_cancel() will return %TRUE here if it managed
// to disable return-on-cancel, or %FALSE if the task was cancelled
// before it could.
if (g_task_set_return_on_cancel (task, FALSE))
{
// If the caller cancels at this point, their
// GAsyncReadyCallback won't be invoked until we return,
// so we don't have to worry that this code will run at
// the same time as that code does. But if there were
// other functions that might look at the cake cache,
// then we'd probably need a GMutex here as well.
baker_add_cake_to_cache (baker, cake);
g_task_return_pointer (task, cake, g_object_unref);
}
}

void
baker_bake_cake_async (Baker *self,
guint radius,
CakeFlavor flavor,
CakeFrostingType frosting,
const char *message,
GCancellable *cancellable,
GAsyncReadyCallback callback,
gpointer user_data)
{
CakeData *cake_data;
GTask *task;

cake_data = g_slice_new (CakeData);

...

task = g_task_new (self, cancellable, callback, user_data);
g_task_set_task_data (task, cake_data, (GDestroyNotify) cake_data_free);
g_task_set_return_on_cancel (task, TRUE);
g_task_run_in_thread (task, bake_cake_thread);
}

Cake *
baker_bake_cake_sync (Baker *self,
guint radius,
CakeFlavor flavor,
CakeFrostingType frosting,
const char *message,
GCancellable *cancellable,
GError **error)
{
CakeData *cake_data;
GTask *task;
Cake *cake;

cake_data = g_slice_new (CakeData);

...

task = g_task_new (self, cancellable, NULL, NULL);
g_task_set_task_data (task, cake_data, (GDestroyNotify) cake_data_free);
g_task_set_return_on_cancel (task, TRUE);
g_task_run_in_thread_sync (task, bake_cake_thread);

cake = g_task_propagate_pointer (task, error);
g_object_unref (task);
return cake;
}

Porting from GSimpleAsyncResult

Task's API attempts to be simpler than SimpleAsyncResult 's in several ways: - You can save task-specific data with set_task_data, and retrieve it later with get_task_data. This replaces the abuse of set_op_res_gpointer for the same purpose with SimpleAsyncResult. - In addition to the task data, Task also keeps track of the priority, Cancellable, and MainContext associated with the task, so tasks that consist of a chain of simpler asynchronous operations will have easy access to those values when starting each sub-task. - return_error_if_cancelled provides simplified handling for cancellation. In addition, cancellation overrides any other Task return value by default, like SimpleAsyncResult does when set_check_cancellable is called. (You can use set_check_cancellable to turn off that behavior.) On the other hand, g_task_run_in_thread guarantees that it will always run your `task_func`, even if the task's Cancellable is already cancelled before the task gets a chance to run; you can start your `task_func` with a return_error_if_cancelled check if you need the old behavior. - The "return" methods (eg, return_pointer) automatically cause the task to be "completed" as well, and there is no need to worry about the "complete" vs "complete in idle" distinction. ( Task automatically figures out whether the task's callback can be invoked directly, or if it needs to be sent to another MainContext, or delayed until the next iteration of the current MainContext.) - The "finish" functions for Task -based operations are generally much simpler than SimpleAsyncResult ones, normally consisting of only a single call to propagate_pointer or the like. Since propagate_pointer "steals" the return value from the Task, it is not necessary to juggle pointers around to prevent it from being freed twice. - With SimpleAsyncResult, it was common to call propagate_error from the `_finish()` wrapper function, and have virtual method implementations only deal with successful returns. This behavior is deprecated, because it makes it difficult for a subclass to chain to a parent class's async methods. Instead, the wrapper function should just be a simple wrapper, and the virtual method should call an appropriate `g_task_propagate_` function. Note that wrapper methods can now use legacy_propagate_error to do old-style SimpleAsyncResult error-returning behavior, and is_tagged to check if a result is tagged as having come from the `_async()` wrapper function (for "short-circuit" results, such as when passing 0 to read_async).


Namespace: GLib
Package: gio-2.0

Content:

Properties:

Static methods:

Creation methods:

Methods:

Inherited Members:

All known members inherited from interface GLib.AsyncResult